Improved Results on Geometric Hitting Set Problems

نویسندگان

  • Nabil H. Mustafa
  • Saurabh Ray
چکیده

We consider the problem of computing minimum geometric hitting sets in which, given a set of geometric objects and a set of points, the goal is to compute the smallest subset of points that hit all geometric objects. The problem is known to be strongly NP-hard even for simple geometric objects like unit disks in the plane. Therefore, unless P=NP, it is not possible to get Fully Polynomial Time Approximation Algorithms (FPTAS) for such problems. We give the first PTAS for this problem when the geometric objects are half-spaces in R and when they are an r-admissible set regions in the plane (this includes pseudo-disks as they are 2-admissible). Quite surprisingly, our algorithm is a very simple local search algorithm which iterates over local improvements only.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Duality for Geometric Set Cover and Geometric Hitting Set Problems on Pseudodisks

Given an instance of a geometric set cover problem on a set of points X and a set of objects R, the dual is a geometric hitting set problem on a set of points P and a set of objects Q, where there exists a one-to-one mapping from each xj ∈ X to a dual object Qj ∈ Q and for each Ri ∈ R to a dual point in pi ∈ P , so that a dual point pi is contained in a dual object Qj if and only if the corresp...

متن کامل

Hitting and Piercing Rectangles Induced by a Point Set

We consider various hitting and piercing problems for the family of axis-parallel rectangles induced by a point set. Selection Lemmas on induced objects are classical results in discrete geometry that have been well studied and have applications in many geometric problems like weak epsilon nets and slimming Delaunay triangulations. Selection Lemma type results typically bound the maximum number...

متن کامل

Improved Local Search for Geometric Hitting Set

Over the past several decades there has been steady progress towards the goal of polynomial-time approximation schemes (PTAS) for fundamental geometric combinatorial optimization problems. A foremost example is the geometric hitting set problem: given a set P of points and a set D of geometric objects, compute the minimum-sized subset of P that hits all objects in D. For the case where D is a s...

متن کامل

Geometric Hitting Sets for Disks: Theory and Practice

The geometric hitting set problem is one of the basic geometric combinatorial optimization problems: given a set P of points, and a set D of geometric objects in the plane, the goal is to compute a small-sized subset of P that hits all objects in D. In 1994, Bronniman and Goodrich [6] made an important connection of this problem to the size of fundamental combinatorial structures called -nets, ...

متن کامل

Geometric Optimization Revisited

Many combinatorial optimization problems such as set cover, clustering, and graph matching have been formulated in geometric settings. We review the progress made in recent years on a number of such geometric optimization problems, with an emphasis on how geometry has been exploited to develop better algorithms. Instead of discussing many problems, we focus on a few problems, namely, set cover,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete & Computational Geometry

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2010